2023 MID-ATLANTIC CONFERENCE 11th ANNUAL CURRENT CONCEPTS IN VASCULAR THERAPIES

Endovascular First for the Management of PAD

Todd W Gensler MD April 22, 2023

THE TALE OF THE SCALE THE CASE FOR MINIMALLY INVASE(IVE)

- Define CLTI
- Review prior data
 - Basil 1 Trial
 - TASC II
 - GLASS
- Review most recent data—BEST CLI
- DRAW CONCLUSION FOR ENDO FIRST

Chronic Limb Threatening Ischemia

- Rest pain
- Ulceration
- Gangrene

Global vascular guidelines on the management of chronic limb-threatening ischemia

Michael S. Conte, MD A ≅ • Andrew W. Bradbury, MD • Philippe Kolh, MD • ... Kalkunte R. Suresh, MD • M. Hassan Murad, MD, MPH • the GVG Writing Group * • Show all authors • Show footnotes

SVS Vascular Surger

VOLUME 69, ISSUE 6,

- 200 million PAD patients worldwide
 - 11% (22 million) w/ CLTI

Chronic Limb Threatening Ischemia

- Amputation risk
 - 25% at 1 year if untreated

- Mortality
 - 10-15%/yr w/ revasc

- 22% @ 1 yr untreated

Reducing Nontraumatic Lower-Extremity Amputations by 20% by 2030: Time to Get to Our Feet

A Policy Statement From the American Heart Association

Table I Published survival data after revascularization for chronic limb-threatening ischemia (CLTI)

itudy		Year of publication	Cohort	End point
aubeta Fridh et al ²		2017	Swedish registry with 10,617 patients revascularized open or endovascularly	60% amputation-free survival by 2 years postoperatively
da et al ³	SUPPORTING REV	2015 IEW ARTICLE VOLUI	Japanese registry (OLIVE) with 314 patients revascularized	64% survival by 2 years postoperatively
eller et al ⁴	Survival pre	ediction in pa	tients with chronic limb-threatening isch	urvival by 1 year postoperatively
conte et al ⁵	who under	go infrainguin s, MD, MPH × 🖾 • /	al revascularization Andres Schanzer, MD • Julie M. Flahive, MS •	urvival by 1 year postoperatively
dam et al ⁶	Joseph L. Mills Sr	., MD • Andrew W. Br 2005	adbury, MD • Michael S. Conte, MD • Show all authors Kandomized that (BASIL) in 452 patients revascularized open or endovascularly	70% survival by 2 years postoperatively
Gruppo di Studio dell'Ischemia egli Arti Inferiori ⁷	Cronica Critica	1997	Italian registry of 522 patients	70% survival by 2 years

REVIEW ARTICLES

Richard P. Cambria, MD, Section Editor

The natural history of untreated severe or critical limb ischemia

Abd Moain Abu Dabrh, MBBCh, MS,^{a,b} Mark W. Steffen, MD, MPH,^a Chaitany Noor Asi, MD,^b Zhen Wang, PhD,^b Mohamed B. Elamin, MD,^b Michael S. Con Mohammad Hassan Murad, MD, MPH,^{a,b} *Rochester, Minn; and San Francisco, Calif* Vasc Surg 2015;62:1642-51.)

Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial

- UK trial- 452 pts randomized to surgical or endovascular therapy (angioplasty) for critical limb ischemia.
- Primary endpoint- Limb Salvage
- Similar rates of limb salvage & all-cause mortality at 1 & 3 years.
- More reinterventions after angioplasty (26% vs. 18%).
- Higher costs of surgery at 1 year.

- The most curve saphenous found that a amputation procedure with an surger
- At follow-up survival and endovascul
- A later suba
 7-month in difference i

infrainguinal : with PTA (BASIL) y based on a less morbid icantly less costly

er overall pared to the

ears, there was a t a significant

ENTARA®

Figure 3: All-cause mortality after bypass surgery and balloon angioplasty Bars show 95% CIs for survival up to 1, 2, 3, and 4 years of follow-up, which were calculated from the cumulative hazards.

BASIL (2005)

MORTALITY—5.5%

• MI—7%

• STROKE—1.5%

WND CMPLX—22%

Rising use of endovascular therapy

2015 TASC II (TRANSATLANTIC INTERSOCIETY CONCENSUS) UPDATE

 In practical terms, although the level of evidence is low, the initial revascularization strategy for femoropopliteal disease is commonly an endovascular approach

2015 TASC II UPDATE Infrapopliteal disease

• In practical terms, an "endovascular-first" approach is the current standard of care for symptomatic infrainguinal atherosclerotic disease strengthened by the recent technological advances of DES and DEBs. The Best Endovascular vs Best Surgical Therapy in patients with CLI (BEST-CLI) trial has just been launched and will answer the question of whether optimal surgery for selected patients with CLI and good quality saphenous vein available for bypass is a better choice than endovascular therapy.

Global Vascular Guideline (GVG) 2019

- Global Limb Anatomic Staging System (GLASS)
 - SVS, ESVS, WFVS
- Chronic Limb Threatening Ischemia (CLTI)
- Evidence Based Revascularization (EBR)
- SVS Lower Extremity Threatened Limb Classification System—(WIFI)
- Patient risk, Limb severity, and ANatomic pattern of disease (PLAN)
- Target Arterial Path (TAP)
- Limb Based Patency (LBP)
- Immediate Technical Failure (ITF)

GLASS—PATIENT RISK

	Recommendations	Grade	Level of evidence	Key references
6.3	Estimate 1 periprocedural risk and life expectancy in patients with CLTI who are candidates for revascularization.	(Strong)	C (Low)	
6.4	Define a CLTI patient 2 as average surgical risk when anticipated periprocedural mortality is <5% and estimated 2-year survival is >50%.	(Weak)	C (Low)	Biancari, ⁶³ 2007 Schanzer, ⁶⁴ 2008 Bradbury, ⁶⁵ 2010 Meltzer, ⁶⁶ 2013 Simons ⁶⁷
6.5	Define a CLTI patient 2 as high surgical risk when anticipated periprocedural mortality is \geq 5% or estimated 2-year survival is \leq 50%.	(Weak)	C (Low)	2016

LOW

- PERI-PROC MORTALITY <1-2%
- 2 YR SURVIVAL >70%
- MODERATE
 - PERI-PROC MORTALITY 2-5%
 - 2 YR SURVIVAL 50-70%
- HIGH
 - PERI-PROC MORTALITY >5%
 - 2 YR SURVIVAL \leq 50%

GLASS—SEVERITY OF LIMB THREAT

 Table 2 Wound, Ischaemia, foot Infection (WIfl) scoring classification system

Wound		
Ulcer	Gangrene	score
No ulcer	None	0
Small shallow (subcutaneous)	None	1
Deeper (tendon or muscle)	Gangrenous changes to limited digits	2
Extensive (extending to bone)	Extensive gangrene	3

Ischaemia	n an an an an Anna Anna Anna Anna Anna A		
ABPI	Toe pressure	Ankle systolic pressure	score
<u>>0.8</u>	<u>≥</u> 60 mmHg	>100 mmHg	0
0.79–0.6	40-50 mmHg	70–100 mmHg	1
0.59–0.4	30-39 mmHg	50-70 mmHg	2
<u><</u> 0.39	<30 mmHg	<50 mmHg	3

Foot infection	
Ulcer	score
No signs or symptoms of infection	0
Local infection involving skin and subcutaneous tissue only (<2 cm erythema)	1
Local infection involving deeper structures or with >2 cm erythema (ie, osteomyelitis)	2
As above with SIRS response	3

ATT OF

This table shows the WIfl classification scoring system derived from Mills et al.4

 Table 3 Wound, Ischaemia, foot Infection (WIfI) clinical stage

 associated with amputation risk and revascularisation benefit

Stage	Major amputation risk at 1 year (estimated %)	Revascularisation benefit score
1	2–3	Very low
2	8–9	Low
3	25	Moderate
4	50	High

This table shows the clinical stages calculated from the WIfl system and how the stages are associated with amputation risk and revascularisation benefit.

Wlfl scoring: a reliable tool for risk stratification in the diabetic foot clinic

VASCULAR SOCIETIES

J.Vasc.Soc.G.B.Irel. 2022;1(3):71-76

GREAT BRITAIN & IRELAND

TARA

Williams P,¹ Bakewell Z,¹ Akinlade B,¹ Russell DA^{1,2}

GLASS—ANATOMIC PATTERN OF DISEASE

Table 5.3. Assignment of Global Limb Anatomic Staging System (GLASS) Stage

			Infrainguinal GL	ASS stage (I-III)		
	4	III	III	III	III	III
	3	II	Ш	II	III	III
ED Crada	2	l I	Ш	II	II	III
FP Grade	1	I.	I	II	II	III
	0	NA	L I	I	II	III
		0	1	2	3	4
				IP Grade		

NA, Not applicable.

After selection of the target arterial path (TAP), the segmental femoropopliteal (*FP*) and infrapopliteal (*IP*) grades are determined from high-quality angiographic images. Using the table, the combination of FP and IP grades is assigned to GLASS stages I to III, which correlate with technical complexity (low, intermediate, and high) of revascularization.

Table 5.4. Descriptive summary of Global Limb Anatomic Staging System (GLASS) stages of infrainguinal arterial disease

	Estimated PVI of	outcomes	
Stage	Technical failure	1-year LBP	Anatomic pattern
T	<10%	>70%	Short- to intermediate-length FP disease and/or short-length IP disease; no or minimal popliteal disease
Ш	<20%	50%-70%	Intermediate- to long-length FP disease; may include popliteal stenosis and/ or short- to intermediate-length IP disease
Ш	>20%	<50%	Extensive FP or IP occlusions, alone or in combination with any disease in the other segment; popliteal CTO
CTO. Chron	ic total occlusion: FP. femo	propopliteal: IP, infra	apopliteal: I.B.P. limb-based patency: PVI, peripheral [endo-]vascular intervention

GLASS Recommendations

6.32	In average-risk CLTI patients with infrainguinal disease, base decisions of endovascular intervention vs open surgical bypass on the severity of limb threat (eg, WIfI), the anatomic pattern of disease (eg, GLASS), and the availability of autologous vein.	1 (Strong)	C (Low)	Almasri, ⁷ 2018
6.33	Offer endovascular revascular ation when technically feasible for high-risk patients with advanced limb threat (eg, WIfI stage 4) and significant perfusion deficits (eg,	2 (Weak)	C (Low)	Abu Dabrh,⁵ 2015 Zhan, ⁶⁹ 2015
	WIfl ischemia grades 2 and 3).			Causey ⁷⁰ 2016
6.34	Consider endovascular revascularization for high-risk patients with intermediate limb threat (eg, WIfI stages 2 and 3) and significant perfusion deficits (eg, WIfI	2 (Weak)	C (Low)	Darling, ⁷¹ 2016
	ischemia grades 2 and 3).			Rodinson, ² 2017
6.35	Consider endovascular revascularization for high-risk patients with advanced limb threat (eg, WIfI stage 4) and moderate ischemia (eg, WIfI ischemia grade 1) if the wound progresses or fails to reduce in size by ≥50% within 4 weeks despite appropriate infection control, wound care, and offloading, when technically feasible.	2 (Weak)	C (Low)	

GLASS Recommendations

6.36	Consider endovascular revascularization for high-risk patients with Intermediate limb threat (eg, WIfI stages 2 and 3) and moderate ischemia (eg, WIfI ischemia grade 1) if the wound progresses or fails to reduce in size by ≥50% within 4 weeks despite appropriate infection control, wound care, and offloading, when technically feasible.	2 (Weak)	C (Low)		
6.37	Consider open surgery in selected high-risk patients with advanced limb threat (eg, Wlfl stage 3 or 4), significant perfusion deficits (ischemia grade 2 or 3), and advanced complexity of disease (eg, GLASS stage III) or after prior failed endovascular attempts and unresolved symptoms of CLTI.	2 (Weak)	C (Low)		
6.38	Consider angiosome-guided revascularization in patients with significant wounds (eg, Wlfl wound grades 3 and 4), particularly those involving the midfoot or hindfoot, and when the appropriate TAP is available.	2 (Weak)	C (Low)	Azuma, ⁹⁵ 2012 Sumpio, ⁹⁶ 2013 Biancari, ⁹⁷ 2014 Chae, ⁹⁸ 2016 Jongsma, ⁹⁹ 2017	

THE EVIDENCE GAP

BEST-CLI
Correction of

	CAD Coronary Artery	CVD Cerebral Vascular	CLI Critical LIMB
AFFECTED	DISEASE	DISEASE	ISCHEMIA
INDIVIDUALS IN THE US	28.2 MILLION	7.8 MILLION [†]	~10 MILLION (JACC-AGARWAL, 2016)
Completed Landmark RCTs	CAPRICORN (2001) EUROPA (2003) COURAGE (2007) PLATO (2009) ATLAS ACS 698 1 (2012) F 1 9 1 (2)	ACAS (1995) NASCET (1998) ARCHER(2003) SAPPHIRE(20 SPARCI CRF	BASIL (2005) 452
	L	RIS (2015) Aut-1 (2016)	PRESENTATION TCT 2019 Clinical Tr BASIL-2 at Presenter: Matthew Menar

† CIRCULATION. 2018;137:E558-E577, CDC FACT SHEET

RESEARCH SUMMARY

Surgery or Endovascular Therapy for Chronic Limb-Threatening Ischemia

Farber A et al. DOI: 10.1056/NEJMoa2207899

CUNICAL PROBLEM

Patients with chronic limb-threatening ischemia (CLTI) require timely revascularization to improve perfusion and reduce the risk of amputation. Whether an initial strategy of surgical revascularization or endovascular therapy results in superior outcomes is unclear.

Major Adverse Limb Event or Death from Any Cause

Major Adverse Cardiovascular Events in Cohort 1

Among patients with CLTI who had a great saphenous vein adequate for surgical revascularization, clinical outcomes with an initial treatment of surgery were superior to those with endovascular therapy; however, in patients who required an alternative bypass conduit, outcomes were similar with the two procedures.

Intn'l, prospective, randomized trial (US, Canada, Finland, Italy, and Now Zoaland)

BEST CLI TRIAL

- 1830 patier disease
- 2 cohorts—
 - (1) Ade
 - (2) Inad conduit

150 centers FUNDING STOPPED/ ADD'L FUNDING FOR 24 MONTH F/U FOR COHORT 1

- Study results may have been influenced by selection or operator bias as a consequence of the pragmatic trial design and implementation.
- · Patient suitability for procedures was determined locally and varied according to study site and individual investigator.
- · Enrollment targets were not met for patients overall and for women.

Links: Full Article | NEJM Quick Take | Editorial

BEST-CLI Funding Sources

INITIAL NHLBI FUNDING:

\$27,300,000 (All values in USD)

(Includes contracts with Brigham and Women's Hospital & New England Research Institute/ HealthCore)

The views expressed in this article are solely those of the authors and do not necessarily represent official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health.

Patient Follow-up Funding (Provided After 11/01/2019)

Industry				
Janssen Pharmaceuticals		\$2,200,000		
Gore Medical		\$1,500,000		
Bard Pharmaceuticals		\$500,000		
Medtronic		\$450,000		
Cook Medical		\$200,000		
Boston Scientific		\$100,000		
Abbott Laboratories		\$75,000		
Cordis		\$50,000		
Cardiovascular Systems Inc (CSI)		\$30,000		
Physician Societies				
Vascular InterVentional Advances	(VIVA)	\$500,000		
Society for Vascular Surgery	(SVS)	\$100,000		
New England Society for Vascular Surgery	(NESVS)	\$20,000		
Eastern Vascular Society		\$20,000		
Western Vascular Society		\$16,620		
Canadian Society for Vascular Surgery	(CSVS)	\$15,794.74		
Midwest Vascular Surgery Society		\$10,000		
Society for Clinical Vascular Surgery	(SCVS)	\$10,000		
Society of Interventional Radiology	(SIR)	\$10,000		
Vascular and Endovascular Surgery So	ciety (VESS)	\$5,000		
Southern Association of Vascular Surge	eons	\$5,000		
Society for Vascular Medicine	\$1,000			

BEST-CLI Investigators by Specialty

1,096 Investigators

- 786 Vascular Surgeons
- 145 Interventional Cardiologists
- 156 Interventional Radiologists
 - 4 Vascular Medicine
 - 5 Other

0S

ENDPOINTS

- PRIMARY
 - Amputation above ankle
 - Major Limb ReIntervention
 - New bypass
 - Graft revision
 - Thrombectomy/thrombolysis
 - Death
- SECONDARY
 - Reintervention and Amputation Free Survival
 - MALE--POD
 - Death w/in 30 days of index procedure
 - Minor reinterventions
 - Adverse CV event (MI, Stroke, Death)
 - Serious adverse event

RANDOMIZATION

• 667/2525 (26.4%) EXCLUDED

- 1847 RANDOMIZED
 - 1434 COHORT 1
 - 396 COHORT 2

A Farber et al. N Engl J Med 2022;387:2305-2316.

HIGH RISK > 15%

Investigator assessment

usion Criteria

RECT

RISK STRATIFICATION

• EAGLE

- Eagle Criteria:
 - · Specific to cardiac risk after vascular surgery
 - Age > 70, Angina, Hx of MI or Q wave, CHF, DM
 - 0 factors = 3%, 1-2 factors = 8-15%, 3 factors = 18-50%
 - · Intermediate risk then stress test
 - High risk then consider going straight to catheterization

HIGH RISK EAGLE 71yo diabetic w/ prior MI

RCRI Elevated-risk surgery Yes +1 No 0 Intraperitoneal; intrathoracic; suprainguinal vascular (see 2014 ACC/AHA Guideline) History of ischemic heart disease **No** 0 Yes +1 History of myocardial infarction (MI); history of positive exercise test; current chest pain considered due to myocardial ischemia; use of nitrate therapy or ECG with pathological Q waves History of congestive heart failure No 0 Yes +1 Pulmonary edema, bilateral rales or S3 gallop; paroxysmal nocturnal dyspnea; chest x-ray (CXR) showing pulmonary vascular redistribution **3** points 15.0% Class IV Risk 30-day risk of death, MI, or cardiac arrest From Duceppe 2017, based on pooled data from 5 high quality external validations (4 prospective). These numbers are higher than those often guoted from the nowoutdated original study (Lee 1999). See Evidence for details.

Table 1. Characteristics of the Patients at	Baseline.*					6.2
Characteristic		Cohort 1	Cohort 2	زف		
	Overall (N=1434)	Surgery (N = 718)	Endovascular Therapy (N=716)	Overall (N=396)	Surgery (N = 197)	Endovascular Therap (N=199)
Demographic						
Age — yr	66.9±9.9	66.9±9.8	67.0±10.0	68.6±9.2	68.4±8.8	68.8±9.6
Female sex — no./total no. (%)	408/1434 (28.5)	201/718 (28.0)	207/716 (28.9)	111/396 (28.0)	56/197 (28.4)	55/199 (27.6)
Race or ethnic group — no./total no. (%)†						
White	1028/1423 (72.2)	500/711 (70.3)	528/712 (74.2)	275/390 (70.5)	143/194 (73.7)	132/196 (67.3)
Black	275/1423 (19.3)	156/711 (21.9)	119/712 (16.7)	96/390 (24.6)	40/194 (20.6)	56/196 (28.6)
Asian	20/1423 (1.4)	13/711 (1.8)	7/712 (1.0)	2/390 (0.5)	2/194 (1.0)	0/196
Other	100/1423 (7.0)	42/711 (5.9)	58/712 (8.1)	17/390 (4.4)	9/194 (4.6)	8/196 (4.1)
Hispanic	187/1433 (13.0)	82/717 (11.4)	105/716 (14.7)	53/396 (13.4)	28/197 (14.2)	25/199 (12.6)
Medical history						
Body-mass index:	28.2±6.0	28.2±6.3	28.3±5.8	26.9±5.7	26.8±5.1	27.0±6.2
Coexisting condition — no./total no. (%)						
Hypertension	1238/1424 (86.9)	620/712 (87.1)	618/712 (86.8)	350/395 (88.6)	171/196 (87.2)	179/199 (89.9)
Hyperlipidemia	1041/1422 (72.2)	521/712 (73.2)	520/711 (73.1)	202/205 (75.7)	147/106 (75.0)	152/100 (76.4)
Diabetes	1023/1424 (71.8)	513/712 (72.1)	510/712 (71.6)	238/395 (60.3)	122/196 (62.2)	116/199 (58.3)
Current smoking	509/1424 (35.7)	264/712 (37.1)	245/712 (34.4)	140/395 (35.4)	69/196 (35.2)	71/199 (35.7)
Coronary artery disease	617/1424 (43.3)	301/712 (42.3)	316/712 (44.4)	204/395 (51.6)	97/196 (49.5)	107/199 (53.8)
Congestive heart failure	79/1422 (5.6)	38/711 (5.3)	41/711 (5.8)	27/395 (6.8)	12/196 (6.1)	15/199 (7.5)
Stroke	190/1424 (13.3)	91/712 (12.8)	99/712 (13.9)	62/395 (15.7)	38/196 (19.4)	24/199 (12.1)
Chronic obstructive pulmonary disease	208/1424 (14.6)	100/712 (14.0)	108/712 (15.2)	69/395 (17.5)	34/196 (17.3)	35/199 (17.6)
End-stage kidney disease	151/1423 (10.6)	67/712 (9.4)	84/711 (11.8)	45/395 (11.4)	25/196 (12.8)	20/199 (10.1)
Medication						
Statin — no./total no. (%)	1001/1424 (70.3)	503/713 (70.5)	498/711 (70.0)	307/394 (77.9)	153/195 (78.5)	154/199 (77.4)
Aspirin — no./total no. (%)	953/1424 (66.9)	476/713 (66.8)	477/711 (67.1)	280/394 (71.1)	139/195 (71.3)	141/199 (70.9)
Clopidogrel — no./total no. (%)	312/1424 (21.9)	137/713 (19.2)	175/711 (24.6)	97/394 (24.6)	55/195 (28.2)	42/199 (21.1)
Prasugrel — no./total no. (%)	5/1424 (0.4)	2/713 (0.3)	3/711 (0.4)	1/394 (0.3)	0/195	1/199 (0.5)
Ticagrelor — no./total no. (%)	10/1424 (0.7)	4/713 (0.6)	6/711 (0.8)	4/394 (1.0)	0/195	4/199 (2.0)
Direct-acting oral anticoagulant — no./ total no. (%)	55/1424 (3.9)	27/713 (3.8)	28/711 (3.9)	22/394 (5.6)	9/195 (4.6)	13/199 (6.5)
Warfarin — no./total no. (%)	93/1424 (6.5)	46/713 (6.5)	47/711 (6.6)	31/394 (7.9)	12/195 (6.2)	19/199 (9.5)
Previous intervention						
Tobacco cessation — no./total no. (%)	97/1424 (6.8)	49/712 (6.9)	48/712 (6.7)	26/395 (6.6)	11/196 (5.6)	15/199 (7.5)
Infrainguinal revascularization of index limb — no./total no. (%)	77/1423 (5.4)	40/711 (5.6)	37/712 (5.2)	40/393 (10.2)	20/194 (10.3)	20/199 (10.1)
Limb status						
Ankle-brachial index in index limb§	0.58±0.32	0.58±0.31	0.59±0.34	0.54±0.30	0.53±0.27	0.54±0.32
Ankle pressure — mm Hg¶	84.9±47.7	85.2±46.2	84.5±49.2	81.3±49.6	80.4±47.3	82.2±51.8
Toe pressure — mm Hg	36 3+25 7	36 5+27 7	36 1+23 5	31 0+21 7	37 0+23 5	25 5+18 4

ABI>0.5 in all groups VERY FEW QUIT SMOKING 10% fewer Diabetics in Cohort 2 5% greater prior revasc in Cohort 2

- 1434 PATIENTS—median f/u 2.7 yrs
- 718 SURGERY
 - 307 femoral-popliteal
 - 276 femoral-tibial or pedal
 - 115 popliteal-tibial or pedal
- 716 ENDO
 - 487 superficial femoral artery
 - 382 on the popliteal artery
 - 381 on the tibial or pedal arteries

- SURGERY—98% technical success
 85% single segment GSV
- ENDOVASC—85% technical success
 - 108 FAILURES
 - 66 (61%) TREATED w/ Bypass w/in 30 days

Table 2. Efficacy and Safety Outcomes in Cohort 1.*				
Outcome	Surgery	Endovascular Therapy	Hazard Ratio (95% CI)†	P Value
Efficacy				
Primary outcome: major adverse limb event or death from any cause — no./total no. (%)‡	302/709 (42.6)	408/711 (57.4)	0.68 (0.59–0.79)	<0.001
Secondary outcomes — no./total no. (%)				
Death from any cause	234/709 (33.0)	267/711 (37.6)	0.98 (0.82–1.17)	
Above-ankle amputation of the index limb	74/709 (10.4)	106/711 (14.9)	0.73 (0.54–0.98)	
Intervention in index limb				
Major	65/709 (9.2)	167/711 (23.5)	0.35 (0.27–0.47)	
Minor	205/718 (28.6)	237/716 (33.1)	0.85 (0.70-1.02)	
Perioperative death§	12/687 (1.7)	9/708 (1.3)	1.54 (0.64–3.68)	
Major adverse limb event or perioperative death	139/687 (20.2)	246/708 (34.7)	0.53 (0.43–0.65)	
Myocardial infarction	75/718 (10.4)	85/716 (11.9)	0.97 (0.71–1.33)	
Stroke	39/718 (5.4)	44/716 (6.1)	0.93 (0.60–1.43)	
Safety				
Major adverse cardiovascular event — no. of patients with ≥1 event/total no. of patients (%)				
Event ≤30 days after procedure¶	33/718 (4.6)	23/716 (3.2)	1.46 (0.86-2.50)	0.16
Event during follow-up	269/718 (37.5)	309/716 (43.2)	0.94 (0.80–1.11)	0.48
Serious adverse event				
Event occurred ≤30 days after index procedure — no. of patients with ≥1 event/total no. of patients (%)∥	244/718 (34.0)	226/716 (31.6)		0.34
No. of events ≤30 days after index procedure	427	379		0.10
No. of patients with ≥1 event/total no. of patients (%)	590/718 (82.2)	614/716 (85.8)		0.07
No. of events during follow-up	3141	3468		< 0.001
Technical success of index procedure — no./total no. (%)**	651/662 (98.3)	596/704 (84.7)		
Length of hospital stay after index procedure††				
No. of days	7.5±6.2	5.9±7.3		
Median no. of days (IQR)	6 (4–9)	3 (1-8)		

1° OUTCOME (MALE/Death)

•

- 106 more MALE/death in ENDOVASCULAR pts
 - 33 more deaths (234 vs 267)
 - 32 more above ankle amputations (74 vs 106)
 - 102 more major interventions (65 vs 167)
 - 66 subsequent bypasses
- SURGERY vs ENDOVASCULAR OUTCOMES
 - DEATH-33% vs 37.6%
 - MAJOR AMP-10.4% vs 14.9%
 - MAJOR REINTERVENTION 9.2% vs 23.5%

COHORT 1—ADEQ GSV—2° Outcomes

COHORT 2—INADEQ GSV

- 396 PATIENTS—median f/u 1.6 yrs
- 197 SURGERY
 - 105 femoral–popliteal
 - 86 femoral–tibial or pedal
 - 18 popliteal–tibial or pedal
 - 48 alternative autogenous veins
 - 119 bypasses involving a prosthetic
 - 37 ADEQ GSV (19%)
- 199 ENDOVASCULAR
 - 133 SFA
 - 114 Popliteal
 - 88 tibial/pedal

COHORT 2—INADEQ GSV

- SURGERY—100% technical success
 19% single segment GSV
- ENDOVASC—81% technical success
 - 37 FAILURES
 - 26 (70%) TREATED w/ Bypass w/in 30 days

COHORT 2—INADEQ GSV

Figure S3: Time to Event Curves of the Primary Endpoint and its Individual Components, Cohort 2

A. Major Adverse Limb Events or Death

MALE/Death p= 0.12

- Surgery--83/194 pts (42.8%)
- Endovascular--95/199 pts (47.7%)

Table S10, Efficacy and Safety Endpoints for Cohort 2

Outcomes	Surgery no. (%)	Endovascular no. (%)	HR (95% CI)**	P-value
Efficacy				
Primary outcome				
MALE or all-cause death*	83/194 (42.8)	95/199 (47.7)	0.79 (0.58,1.06)	0.12
Secondary outcomes				
All-cause death*	51/194 (26.3)	48/199 (24.1)	1.15 (0.77,1.72)	
Above-Ankle Amputation of the Index Limb*	29/194 (14.9)	28/199 (14.1)	1.10 (0.65,1.87)	
Major Reintervention on the Index Limb*	28/194 (14.4)	51/199 (25.6)	0.47 (0.29,0.76)	
Minor Reintervention on the Index Limb*	57/197 (28.9)	64/199 (32.2)	0.89 (0.62,1.27)	
MALE or POD [‡]	48/190 (25.3)	66/195 (33.8)	0.62 (0.43,0.91)	
POD [†]	5/190 (2.6)	1/195 (0.5)	-	
MI*	17/197 (8.6)	19/199 (9.5)	0.92 (0.47,1.81)	
Stroke*	5/197 (2.5)	7/199 (3.5)	0.82 (0.25,2.75)	
Safety				
MACE within 30 days [¶]	8/197 (4.1)	5/199 (2.5)	1.43 (0.44,4.63)	0.55
MACE*	61/197 (31.0)	63/199 (31.7)	1.06 (0.73,1.53)	0.76
SAE within 30 days, no. patients who had one or more event/no. patients§	50/197 (25.4)	49/199 (24.6)		0.91‡‡
SAE within 30 days, no. events§	84	94		0.50 ^{§§}
Total SAE, no. patients who had one or more event/no. patients	151/197 (76.6)	154/199 (77.4)		0.91‡‡
Total SAE, no. events	694	749		0.21 ^{§§}

Technical success of index procedure¹¹¹

188/188 (100.0) 154/191 (80.6)

.0,8.0)

Length of hospital stay after index procedure§§

Mean ± SD	6.4±5.3	5.4±6.6
Median (Q1-Q3)	5.0 (3.0,7.0)	3.0 (1.0,8.

COHORT 2

- 12 more MALE/Death in ENDO
 - 3 less Deaths (48 vs 51) _
 - 1 less Major Amputation (28 vs 29)
 - 23 more Major Reinterventions (51 vs 28)
- MACE
 - SURGERY (31.0%)
 - ENDO (31.7%)
- Safety Adverse Events thru F/U
 - SURGERY (76.6%) _
 - ENDO (77.4%)

QUESTIONS

 COHORT 1 COHORT 2 ENDO 57% 47% COHORTS SO DISPARATE WHEN THEY ARE **IDENTICAL FOR THE SURGERY COHORTS?** COHORT 1 SURGERY COHORT 2 43% 43%

		Cohort 1		Cohort 2					
Characteristics	Overall	Surgery	Endovascular	Overall	Surgery	Endovascular			
	(N=1434)	(N=718)	(N=716)	(N=396)	(N=197)	(N=199)			
Age — yr	66.9±9.9	66.9±9.8	67.0±10.0	68.6±9.2	68.4±8.8	68.8±9.6			
Female Sex, no. (%)	408	201	207	111	56	55			
	(28.5)	(28.0)	(28.9)	(28.0)	(28.4)	(27.6)			
Hispanic, no./total no. (%)	187/1433	82/717	105/716	53	28	25			
	(13.0)	(11.4)	(14.7)	(13.4)	(14.2)	(12.6)			
Pace, no./total no. (%)*									
White	1028/1423	500/711	528/712	275/390	143/194	132/196			
	(72.2)	(70.3)	(74.2)	(70.5)	(73.7)	(67.3)			
Black	275/1423	156/711	119/712	96/390	40/194	56/196			
	(19.3)	(21.9)	(16.7)	(24.6)	(20.6)	(28.6)			
Asian	20/1423	13/711	7/712	2/390	2/194	0			
	(1.4)	(1.8)	(1.0)	(0.5)	(1.0)	(0.0)			
Other	100/1423	42/711	58/712	17/390	9/194	8/196			
	(7.0)	(5.9)	(8.1)	(4.4)	(4.6)	(4.1)			
Body Mass Index kg/m ^{2§}	28.2±6.0	28.2±6.3	28.3±5.8	26.9±5.7	26.8±5.1	27.0±6.2			
ASA Classification, no./total									
1	95/1415	47/709	48/706	15/393	4/194	11/199			
	(6.7)	(6.6)	(6.8)	(3.8)	(2.1)	(5.5)			
2	211/1415	89/709	122/706	55/393	28/194	27/199			
	(14.9)	(12.6)	(17.3)	(14.0)	(14.4)	(13.6)			
3	910/1415	464/709	446/706	264/393	132/194	132/199			
	(64.3)	(65.4)	(63.2)	(67.2)	(68.0)	(66.3)			
4	199/1415	109/709	90/706	59/393	30/194	29/199			
	(14.1)	(15.4)	(12.7)	(15.0)	(15.5)	(14.6)			
Hypertension, no./total no.	1238/1424	620/712	618/712	350/395	171/196	179/199			
(%)	(86.9)	(87.1)	(86.8)	(88.6)	(87.2)	(89.9)			
Hyperlipidemia, no./total	1041/1423	521/712	520/711	299/395	147/196	152/199			
no. (%)	(73.2)	(73.2)	(73.1)	(75.7)	(75.0)	(76.4)			
Coronary Artery Disease,	617/1424	301/712	316/712	204/395	97/196	107/199			
no./total no. (%)	(43.3)	(42.3)	(44.4)	(51.6)	(49.5)	(53.8)			
Congestive Heart Failure,	79/1422	38/711	41/711	27/395	12/196	15/199			
no./total no. (%)	(5.6)	(5.3)	(5.8)	(6.8)	(6.1)	(7.5)			
Chronic Obstructive	208/1424 (14.6)	100/712 (14.0)	108/712	69/395 (17.5)	34/196 (17.3)	35/199			

Table S4: Baseline Patient Characteristics

no./total no. (%)

DIFFERENCES

- COHORT 1
 - More whites, fewer blacks
 - Better ASA class
 - Less HTN, HLD, CAD, CHF, COPD

		Cohort 1			Cohort	t 2	
Characteristics	Overall (N=1434)	Surgery (N=718)	Endovascular (N=716)	Overall (N=396)	Surgery (N=197)	Endovascular (N=199)	
History of Stroke, no./total no. (%)	190/1424 (13.3)	91/712 (12.8)	99/712 (13.9)	62/395 (15.7)	38/196 (19.4)	24/199 (12.1)	DIFFERENCES
End Stage Kidney Disease, no./total no. (%)	151/1423 (10.6)	67/712 (9.4)	84/711 (11.8)	45/395 (11.4)	25/196 (12.8)	20/199 (10.1)	DITTERENCES
Current smoking, no./total no. (%)	509/1424 (35.7)	264/712 (37.1)	245/712 (34.4)	140/395 (35.4)	69/196 (35.2)	71/199 (35.7)	
Diabetes, no./total no. (%)	1023/1424 (71.8)	513/712 (72.1)	510/712 (71.6)	238/395 (60.3)	122/196 (62.2)	116/199 (58.3)	Cohort 1
Ambulatory Status, no./tota	-700/4400	000 744	000/740	017/005	107/100		
Ambulatory without assistance						_	
Ambulatory with assistance					\mathbf{P}		
Non -ambulatory							
Living at Home, no./total no. (%)							
Medications, no./total no. (%)							OHORI2
Treated pharmacologically for smoking							
At least one statin	1001/1424 (70.3)	503/713 (70.5)	498/711 (70.0)	307/394 (77.9)	153/195 (78.5)	154/199 (77.4)	
At least one antiplatelet drug	1025/1424 (72.0)	508/713 (71.2)	517/711 (72.7)	303/394 (76.9)	153/195 (78.5)	150/199 (75.4)	
At least one aspirin	953/1424 (66.9)	476/713 (66.8)	477/711 (67.1)	280/394 (71.1)	139/195 (71.3)	141/199 (70.9)	
At least one clopidogrel	312/1424 (21.9)	137/713 (19.2)	175/711 (24.6)	97/394 (24.6)	55/195 (28.2)	42/199 (21.1)	
At least one prasugrel	5/1424 (0.4)	2/713 (0.3)	3/711 (0.4)	1/394 (0.3)	0/195 (0.0)	1/199 (0.5)	
At least one ticagrelor	10/1424 (0.7)	4/713 (0.6)	6/711 (0.8)	4/394 (1.0)	0/195 (0.0)	4/199 (2.0)	
Dual Antiplatelet Therapy	254/1424 (17.8)	110/713 (15.4)	144/711 (20.3)	79/394 (20.1)	41/195 (21.0)	38/199 (19.1)	

tory

SENTARA[®]

PRIMARY ENDPOINTS										
ENDOVASCULAR COHORTS										
	COHORT 1	COHORT 2								
DEATH	37.6%	24.1%								
MAJOR AMP	14.9%	14.1%								
MAJOR REINT	23.5%	25.6%								

LIMITATIONS

- Planned number of patient enrollment not met
- 667/2525 (26.4%) EXCLUDED → REGISTRY
- 363 pts lost to f/u (19.8%)
- Low technical success rates for endo (80-85%)
- 66% had infrapopliteal disease however complexity of disease not well defined

THANK YOU

twgensle@sentara.com

OVERALL SURVIVAL CLINICAL END-POINTS QUALITY OF LIFE FUNCTIONAL STATUS HEALTH ECONOMIC

ENTARA®

Figure S4: Subgroup Analyses of the Primary Endpoint, Cohort 2

Subgroup	Surgery no. event/ no.total(%)	Endovascular no. event/ no.total(%)	
Overall	83/194 (43)	95/199 (48)	
Infrainguinal PAD and			
infrapopliteal occlusive disease	50/100 / 10	05/107/154	
Yes	52/122 (43)	65/127 (51)	
	31/72 (43)	30/72 (42)	
Rutherford category	20/57 (25)	20/60 / 49)	
Rutherford entegory 4	20/57 (35)	29/00 (40)	
Gender	03/137 (40)	00/139 (47)	
Male	62/140 (44)	70/144 (49)	
Female	21/54 (39)	25/55 (45)	_
Race	21/01 (00)	20/00 (10)	
White	61/141 (43)	63/132 (48)	_
Black	18/39 (46)	28/56 (50)	
Asian	1/2 (50)	. ,	
All Others	2/9 (22)	3/8 (38)	
Ethnicity			
Hispanic	10/27 (37)	10/25 (40)	
Non-Hispanic	73/167 (44)	85/174 (49)	-
Race/ethnicity			
Hispanic	10/27 (37)	10/25 (40)	
Black Non-Hispanic	18/39 (46)	28/55 (51)	
All Others	55/127 (43)	57/119 (48)	
Age	75/177 (40)	70/172 /AE	
< 80 yr	8/17 (42)	17/26 (65)	
Age (Quartiles)	0/17 (47)	17/20 (03)	-
< 60.96 yr	17/40 (43)	20/39 (51)	_
60.96 to 67.15 vr	18/51 (35)	17/47 (36)	
67.16 to 73.82 yr	21/49 (43)	28/58 (48)	
≥ 73.83 yr	27/54 (50)	30/55 (55)	
Diabetes	. ,	. ,	
Diabetes	55/120 (46)	52/116 (45)	
No Diabetes	28/74 (38)	43/83 (52)	
WIfI Grade 3 wound on index limb			
Grade 3 wound	4/12 (33)	6/11 (55)	
Less than Grade 3 wound	76/178 (43)	86/180 (48)	

COHORT 2—INADEQ GSV

Endo

•

More infrapop dz (50% v 40%)

MORBIDITY/MORTALITY OF OPEN SURGICAL BYPASS

BASIL (2005)

PREVENT III (2006)

• MORTALITY—5.5%

- MORTALITY—2.7%
- MI—7% MI—4.7%
- STROKE—1.5% STROKE—1.4%
- WND CMPLX—22% WND CMPLX—4.8%

REVIEW ARTICLES

Richard P. Cambria, MD, Section Editor

Bypass surgery versus endovascular interventions in severe or critical limb ischemia

Abd Moain Abu Dabrh, MBBCh, MS,^{a,b} Mark W. Steffen, MD, MPH,^a Noor Asi, MD,^b Chaitanya Undavalli, MBBS,^b Zhen Wang, PhD,^b Mohamed B. Elamin, MD,^b Michael S. Conte, MD,^c and Mohammad Hassan Murad, MD, MPH,^{a,b} *Rochester, Minn; and San Francisco, Calif*

- Commissioned by SVS
- 9 studies/3071 subjects
- No significant difference

- amputation (OR, 1.2; 95% CI, 0.87-1.65).
- Bypass surgery was associated with higher primary patency (OR, 2.50; 95% CI, 1.25 4.99) and assisted primary patency (OR, 3.39; 95% CI, 1.53-7.51).
- The quality of evidence was low for mortality and amputation outcomes and moderate for patency outcomes

Society for Vascular Surgery

Vascular Surgery

VOLUME 63, ISSUE 1, P244-253.E11, JANUARY 2016

2015 TASC II UPDATE Infrapopliteal disease

 In a large meta-analysis of series using PTA as the primary treatment modality that included many older series, the 3-year limb salvage rate was 82.4%.

Romiti M, Albers M, Brochado-Neto FC, et al. Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg. 2008;47:975–981.

A systematic review and meta-analysis of revascularization outcomes of infrainguinal chronic limb-threatening ischemia Journal of Vascular Surgery

JVS

Jehad Almasri, MD • Jayanth Adusumalli, MBBS, MPH • Noor Asi, MD • Sumaya Lakis, MD •

Mouaz Alsawas, MD, MSc • Larry J. Prokop, MLS •

Journal of Vascular Surgery, Vol. 68, Issue 2, p624–633, Published online: May 24, 2018

Andrew Bradbury, BSc, MB, ChB Honours, MD, MBA, FRCSEd • Philippe Kolh, MD, PhD •

Michael S. Conte, MD • M. Hassan Murad, MD, MPH 2 Show less

- 44 studies/8600 pts
- Infrapopliteal disease •
 - GSV patency had higher patency rates at 1 and 2 years (Primary: 87%, 78%; Secondary: 94%, 87%, respectively) compared with all other interventions

DES •

- improved patency over BMS in infrapopliteal dz (1°patency: 73% vs 50% at 1 yr), _ and was at least comparable to balloon angioplasty (66% primary patency)
- **Mortality**
 - NO SIGNIFICANT DIFFERENCE @ 1 AND 3 YRS

SVS Society for Vascular Surgery

 Overall, it seems that major adverse events seen in patients with CTLI did not importantly differ between endovascular and open bypass. Increased patency did not always correlate with a significant effect on survival and risk of amputation, which may be a limitation of the available evidence.

HDL Cholesterol

HDL should be prior to drug treatment

50 mg/dL is used for baseline risk.

Chronic Kidney Disease

Yes √ No

CKD status is not part of the risk algorithm but is used for calculating the benefit of certain therapies

U

Family History of Early CHD

The amount of additional risk (relative increase in risk) conferred from a family member to a patient depends on: (1) how close a relative, (2) age of a relative, (3) number of affected family members.

If mother (< 65 yrs) increase risk 60%

If father (< 55 yrs) increase risk 75%

10 years

		Cohort 1		Cohort 2						
Characteristics	Overall (N=1434)	Surgery (N=718)	Endovascular (N=716)	Overall (N=396)	Surgery (N=197)		Endovascular (N=199)	I		
At least one DOAC	55/1424 (3.9)	27/713 (3.8)	28/711 (3.9)	22/394 (5.6)	9/195 (4.6)		13/199 (6.5)	I		
At least one warfarin	93/1424 (6.5)	46/713 (6.5)	47/711 (6.6)	31/394 (7.9)	12/195 (6.2)		19/199 (9.5)	I		
Previous infrainguinal revascularization on index limb, no./total no. (%)	77/1423 (5.4)	40/711 (5.6)	37/712 (5.2)	40/393 (10.2)	20/194 (10.3)		20/199 (10.1)	ĺ		
Randomization Stratum, no./total no. (%)								I		
Ischemic rest pain without significant infrapopliteal disease	127 (8.9)	64 (8.9)	63 (8.8)	49 (12.4)	24 (12.2)		25 (12.6)			
Tissue loss without significant infrapopliteal disease	348 (24.3)	175 (24.4)	173 (24.2)	95 (24.0)	48 (24.4)		47 (23.6)	I		
Ischemic rest pain with significant infrapopliteal disease	164 (11.4)	82 (11.4)	82 (11.5)	70 (17.7)	35 (17.8)		35 (17.6)			
Tissue loss with significant infrapopliteal disease	795 (55.4)	397 (55.3)	398 (55.6)	182 (46.0)	90 (45.7)		92 (46.2)	I		
SVS WIfl Stage, no./total no. (%)								I		
Stage 1	84/1223 (6.9)	46/606 (7.6)	38/617 (6.2)	15/345 (4.3)	9/172 (5.2)		6/173 (3.5)	İ		
Stage 2	321/1223 (26.2)	162/606 (26.7)	159/617 (25.8)	127/345 (36.8)	62/172 (36.0)		65/173 (37.6)	I		
Stage 3	370/1223 (30.3)	167/606 (27.6)	203/617 (32.9)	94/345 (27.2)	48/172 (27.9)		46/173 (26.6)	I		
Stage 4	448/1223 (36.6)	231/606 (38.1)	217/617 (35.2)	109/345 (31.6)	53/172 (30.8)		56/173 (32.4)	ĺ		
Mean index leg ABI ± SD§	0.58±0.32	0.58±0.31	0.59±0.34	0.54±0.30	0.53±0.27		0.54±0.32	I		
Mean Ankle Pressure \pm SD, mm Hg $^{\$}$	84.9±47.7	85.2±46.2	84.5±49.2	81.3±49.6	80.4±47.3		82.2±51.8	Ì		
Mean Toe Pressure ± SD, mm Hg ^{§*}	36.3±25.7	36.5±27.7	36.1±23.5	31.0±21.7	37.0±23.5		25.5±18.4	I		

DIFFERENCES

- COHORT 1
 - Less DOAC, Warfarin
 - Less previous infrainguinal revasc
 - Less infrapop dz in pts w/ rest pain (6%)
 - More infrapop dz in pts w/ tissue loss (9%)
 - More WIfl 1, 3, 4
 - Better ABI and toe pressures

		Cohort 1					Cohort 2							
Characteristics	Overall (N=1434)	verall Surgery 1434) (N=718)		Endovascular (N=716)		Overall S (N=396) (Si (N	Surgery (N=197)		ndov (N=	ascular 199)		
Endovascular Therapy Deta no. (%)	iils,												1	
Location, no. (%)						Γ							Γ	
Superficial Femoral Artery	487	' (34.9)	12 (1	7)	475 (67.1)		133 (34.5	5)	5 (2.6)		1	28 (65.6)		
Popliteal Artery	382	2 (27.4)	<mark>6 (</mark> 0.	9)	376 (53.1)		114 (29.6	5)	2 (1.1)		1	12 (57.4)		
Tibial/Pedal Arteries	381	(27.3)	17 (2	.5)	364 (51.4)		86 (22.3)	2 (1.1)		8	34 (43.1)		
Technique, no. (%)						Γ							Γ	
Atherectomy	10	2 (7.3)	6 (0.	9)	96 (13.6)	Γ	31 (8.1)		1 (0.5)		3	30 (15.4)	Γ	
Angioplasty alone	396	6 (28.4)	23 (3	.3)	373 (52.7)	Γ	96 (24.9)	4 (2.1)		9	92 (47.2)	Γ	
Drug-coated balloon angioplasty	206	6 (14.8)	9 (1.	3)	197 (27.8)		50 (13.0)	1 (0.5)		4	19 (25.1)		
Bare metal Stents	322	2 (23.1)	44 (6	.4)	278 (39.3)	278 (39.3)		93 (24.2)		7) 84		34 (43.1)	Γ	
Drug-eluting stents	177	' (12.7)	6 (0.	9)	171 (24.2)	Γ	43 (11.2)	1 (0.5)	i) 42		42 (21.5)	Γ	
Stent-grafts	72	2 (5.2)	11 (1	.6)	61 (8.6)	Γ	28 (7.3)		3 (1.6)		2	25 (12.8)	Γ	
Superficial Femoral Artery, (%)	no.													
Atherectomy	53	8 (3.8)	2 (0.	3)	51 (7.2)	Γ	19 (4.9)		1 (0.5)			18 (9.2)	Γ	
Angioplasty alone	11	1 (8.0)	2 (0.	3)	109 (15.4)	Γ	27 (7.0)		0 (0.0)		2	27 (13.8)	Γ	
Drug-coated balloon angioplasty	139	(10.0)	8 (1.:	2)	131 (18.5)		30 (7.8)		1 (0.5)		2	29 (14.9)		
Bare metal Stents	209	(15.0)	2 (0.	3)	207 (29.2)		64 (16.6)) 2 (1.1)		6	62 (31.8)		
Drug-eluting stents	12	0 (8.6)	3 (0.4	4)	117 (16.5)		30 (7.8)) 1 (0.5)		29 (14		29 (14.9)		
Stent-grafts	47	' (3.4)	1 (0.	1)	46 (6.5)		19 (4.9)		0 (0.0)			19 (9.7)		

E.L.

DIFFERENCES

COHORT 1

•

- More SFA/tibial
- More POBA—5%
- More DCB—3%
- Less BMS-4%
- More DES—3%
- Less stent grafts-4%

- Click to edit Master text styles
 - Second level
 - Third level
 - Fourth level» Fifth level

- Eagle Criteria:
 - Specific to cardiac risk after vascular surgery
 - Age > 70, Angina, Hx of MI or Q wave, CHF, DM
 - 0 factors = 3%, 1-2 factors = 8-15%, 3 factors = 18-50%
 - Intermediate risk then stress test
 - High risk then consider going straight to catheterization

- · Goldman's risk index scoring
 - Age over 70 years (5 points)
 - Myocardial infarction occurring within the last 6 months (10 points)
 - Presence of heart failure signs (JVD, or ventricular gallop) (11 points)
 - Significant aortic stenosis (3 points)
 - Arrhythmia (other than sinus or premature atrial contractions) (7 points)
 - The presence of 5 or more PVCs per minute (7 points)

- Goldman's risk index scoring cont'd
 - Medical history or conditions including (3 points): Presence of PO2 less than 60; PCO2 greater than 50; K below 3; HCO3 under 20; BUN over 50 serum creatinine greater than 3; Elevated SGOT, chronic liver disease; Being bedridden
 - Type of operation:
 - Emergency (4 points)
 - Intraperitoneal, intrathoracic, or aortic (3 points)

- Goldman's risk index scoring
 - Class I (0 to 5 points): 1.0% risk of cardiac complications
 - Class II (6 to 12 points): 7.0% risk of cardiac complications
 - Class III (13 to 25 points): 14% risk of cardiac complications
 - Class IV (26 to 53 points): 78% risk of cardiac complications

Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial

- UK trial- 452 p (angioplasty) f
- Primary endpc
- Similar rates o
- More reinterve
- Higher costs o

Figure 3: All-cause mortality after bypass surgery and balloon angioplasty Bars show 95% CIs for survival up to 1, 2, 3, and 4 years of follow-up, which were calculated from the cumulative hazards.

- Click to edit Master text styles
 - Second level
 - Third level
 - Fourth level
 - » Fifth level

